We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

In Vivo Cell Tracking With Video Rate Multimodality Laser Scanning Microscopy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

Studies of biological processes, such as disease progression and response to therapy, call for live imaging methods that allow continuous observation without terminating the study subject for histological tissue processing. Among all current imaging modalities, optical microscopy is the only method capable of probing live tissue with cellular and subcellular resolution. We present a video-rate (30 frames/s), multimodality imaging system that is designed specifically for live animal imaging and cell tracking. In vivo depth-sectioned, high-resolution images are obtained using confocal and nonlinear optical techniques that extract structural, functional, and molecular information by combining multiple contrast mechanisms, including back scattering, fluorescence (from single- and two-photon excitation), second harmonic generation, and coherent anti-Stokes Raman scattering. Simultaneous use of up to three modalities is possible and eliminates the need for coregistration, especially on large-scale images. A real-time movement correction algorithm was developed to extend integration times in cases where the image needs to be stabilized against subject movement. Finally, imaging of fast moving leukocytes in blood vessels is made possible with a modification that permits operation at 120 frames/s over a smaller area. Sample imagery obtained in vivo with the microscope is presented to illustrate the capabilities.

Published in:

Selected Topics in Quantum Electronics, IEEE Journal of  (Volume:14 ,  Issue: 1 )