By Topic

An Alternative Approach to Analyze Fluorescence Lifetime Images as a Base for a Tumor Early Diagnosis System

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Eruv, T. ; Tel-Aviv Univ., Tel-Aviv ; Ben-David, M. ; Gannot, Israel

Fluorescence lifetime imaging is a very promising imaging method for early detection of malignant tumors. It offers many advantages over conventional fluorescence methods, especially because the acquired signal does not rely on the fluorophore concentration in the tissue. As in all imaging method, the goal is to determine the exact location of a malignant tumor. However, since we are dealing with optical imaging, the inverse problem, i.e., extracting the tumor location coordinates is not an easy task to fulfill. In this paper, we describe an alternative method of interpreting the fluorescence lifetime image. The method extracts four features from each decay curve. We show that from these features one can extract the location of the tumor. The theoretical model is compared to the experimental results obtained from tissue-like phantoms.

Published in:

Selected Topics in Quantum Electronics, IEEE Journal of  (Volume:14 ,  Issue: 1 )