Cart (Loading....) | Create Account
Close category search window
 

An FPGA-Based Network Intrusion Detection Architecture

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Das, A. ; Northwestern Univ., Evanston ; Nguyen, D. ; Zambreno, J. ; Memik, G.
more authors

Network intrusion detection systems (NIDSs) monitor network traffic for suspicious activity and alert the system or network administrator. With the onset of gigabit networks, current generation networking components for NIDS will soon be insufficient for numerous reasons; most notably because the existing methods cannot support high-performance demands. Field-programmable gate arrays (FPGAs) are an attractive medium to handle both high throughput and adaptability to the dynamic nature of intrusion detection. In this work, we design an FPGA-based architecture for anomaly detection in network transmissions. We first develop a feature extraction module (FEM) which aims to summarize network information to be used at a later stage. Our FPGA implementation shows that we can achieve significant performance improvements compared to existing software and application-specific integrated-circuit implementations. Then, we go one step further and demonstrate the use of principal component analysis as an outlier detection method for NIDSs. The results show that our architecture correctly classifies attacks with detection rates exceeding 99% and false alarms rates as low as 1.95%. Moreover, using extensive pipelining and hardware parallelism, it can be shown that for realistic workloads, our architectures for FEM and outlier analysis achieve 21.25- and 23.76-Gb/s core throughput, respectively.

Published in:

Information Forensics and Security, IEEE Transactions on  (Volume:3 ,  Issue: 1 )

Date of Publication:

March 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.