By Topic

Near Optimal Neural Network-based Output Feedback Control of Affine Nonlinear Discrete-Time Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Qinmin Yang ; Department of Electrical & Computer Engineering, University of Missouri, Rolla, MO, 65401 USA. e-mail: ; S. Jagannathan

In this paper, a novel online reinforcement learning neural network (NN)-based optimal output feedback controller, referred to as adaptive critic controller, is proposed for affine nonlinear discrete-time systems, to deliver a desired tracking performance. The adaptive critic design consist of three entities, an observer to estimate the system states, an action network that produces optimal control input and a critic that evaluates the performance of the action network. The critic is termed adaptive as it adapts itself to output the optimal cost-to-go function which is based on the standard Bellman equation. By using the Lyapunov approach, the uniformly ultimate boundedness (UUB) of the estimation and tracking errors and weight estimates is demonstrated. The effectiveness of the controller is evaluated for the task of nanomanipulation in a simulation environment.

Published in:

2007 IEEE 22nd International Symposium on Intelligent Control

Date of Conference:

1-3 Oct. 2007