By Topic

Reinforcement Learning based Output-Feedback Controller for Complex Nonlinear Discrete-time Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Peter Shih ; Department of Electrical and Computer Engineering at the University of Missouri-Rolla ; S. Jagannathan

A novel reinforcement-learning based output-adaptive neural network (NN) controller, also referred as the adaptive-critic NN controller, is developed to track a desired trajectory for a class of complex feedback nonlinear discrete-time systems in the presence of bounded and unknown disturbances. This nonlinear discrete-time system consists of a second order system in nonstrict form and an affine nonlinear discrete-time system tightly coupled together. Two adaptive critic NN controllers are designed - primary one for the nonstrict system and the secondary one for the affine system. A Lyapunov function shows the uniformly ultimate boundedness (UUB) of the closed-loop tracking error, weight estimates and observer estimates. Separation principle and certainty equivalence principles are relaxed, persistency of excitation condition is not required and linear in the unknown parameter assumption is not needed. The performance of this controller is evaluated on a spark ignition (SI) engine operating with high exhaust gas recirculation (EGR) levels where the objective is to reduce cyclic dispersion in heat release.

Published in:

2007 IEEE 22nd International Symposium on Intelligent Control

Date of Conference:

1-3 Oct. 2007