Cart (Loading....) | Create Account
Close category search window
 

Performance analysis for MIMO systems with lattice-reduction aided linear equalization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ma, Xiaoli ; Georgia Inst. of Technol., Atlanta ; Wei Zhang

Multi-input multi-output (MIMO) systems equipped with multiple antennas have well documented merits in combating fading and enhancing data rates. MIMO V-BLAST transmission is a widely adopted method to achieve high spectral efficiency and low-complexity implementation. When the maximum likelihood (ML) or near-ML detector is employed, receive diversity is collected for MIMO V-BLAST systems to enhance the performance. However, because of its exponential complexity, ML detector may be infeasible for practical systems when the number of antennas and/or the constellation size is large. On the other hand, linear equalizers have much lower complexity but come with inferior performance. In this paper, we analytically quantify the diversity order of linear detectors for MIMO V-BLAST systems. Then, we adopt low-complexity complex lattice-reduction (LR) aided linear equalizers for V-BLAST systems to improve the performance and prove that LR-aided linear equalizers collect the same diversity order as that exploited by the ML detector but with much lower complexity. Relative to the existing real LR-aided equalizers, we illustrate that the complex LR further reduces the complexity while keeping the same performance. Simulation results corroborate our theoretical claims.

Published in:

Communications, IEEE Transactions on  (Volume:56 ,  Issue: 2 )

Date of Publication:

February 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.