By Topic

Prognostic and Warning System for Power-Electronic Modules in Electric, Hybrid Electric, and Fuel-Cell Vehicles

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Yali Xiong ; Sch. of Electr. Eng. & Comput. Sci., Central Florida Univ., Orlando, FL ; Xu Cheng ; Z. John Shen ; Chunting Mi
more authors

Reliability of power-electronic modules is of paramount importance for the commercial success of various types of electric vehicles. In this paper, we study the technical feasibility of detecting and utilizing early symptoms and warning signs of power-module degradation due to thermomechanical stress and fatigue and develop a prognostic system that can monitor the state of health of the power modules in electric, hybrid, and fuel-cell vehicles. A special degradation trace on the VCEsat of the insulated-gate bipolar-transistor modules was observed by a power-cycling accelerated test, which was not reported in literatures. A prognostic system based on utilizing the aforementioned trace is then developed. The system consists of the hardware architecture and current adaptive-algorithm-based software architecture. In addition, this prognostic system hardly increases the hardware cost on existing vehicle-driver system. An extensive simulation based on MATLAB/Simulink verifies the developed prognostic system.

Published in:

IEEE Transactions on Industrial Electronics  (Volume:55 ,  Issue: 6 )