By Topic

Ridge Extraction From the Time–frequency Representation (TFR) of Signals Based on an Image Processing Approach: Application to the Analysis of Uterine Electromyogram AR TFR

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Terrien, J. ; Univ. of Technol. of Compiegne, Compiegne ; Marque, C. ; Germain, Guy

Time-frequency representations (TFRs) of signals are increasingly being used in biomedical research. Analysis of such representations is sometimes difficult, however, and is often reduced to the extraction of ridges, or local energy maxima. In this paper, we describe a new ridge extraction method based on the image processing technique of active contours or snakes. We have tested our method on several synthetic signals and for the analysis of uterine electromyogram or electrohysterogram (EHG) recorded during gestation in monkeys. We have also evaluated a postprocessing algorithm that is especially suited for EHG analysis. Parameters are evaluated on real EHG signals in different gestational periods. The presented method gives good results when applied to synthetic as well as EHG signals. We have been able to obtain smaller ridge extraction errors when compared to two other methods specially developed for EHG. The gradient vector flow (GVF) snake method, or GVF-snake method, appears to be a good ridge extraction tool, which could be used on TFR of mono or multicomponent signals with good results.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:55 ,  Issue: 5 )