By Topic

Performing Accurate Joint Kinematics From 3-D In Vivo Image Sequences Through Consensus-Driven Simultaneous Registration

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jean-JosÉ Jacq* ; Inst. Nat. de la Sante et de la Rech. Medicale (INSERM), Brest ; Thierry Cresson ; ValÉrie Burdin ; Christian Roux

This paper addresses the problem of the robust registration of multiple observations of the same object. Such a problem typically arises whenever it becomes necessary to recover the trajectory of an evolving object observed through standard 3-D medical imaging techniques. The instances of the tracked object are assumed to be variously truncated, locally subject to morphological evolutions throughout the sequence, and imprinted with significant segmentation errors as well as significant noise perturbations. The algorithm operates through the robust and simultaneous registration of all surface instances of a given object through median consensus. This operation consists of two interwoven processes set up to work in close collaboration. The first one progressively generates a median and implicit shape computed with respect to current estimations of the registration transformations, while the other refines these transformations with respect to the current estimation of their median shape. When compared with standard robust techniques, tests reveal significant improvements, both in robustness and precision. The algorithm is based on widely-used techniques, and proves highly effective while offering great flexibility of utilization.

Published in:

IEEE Transactions on Biomedical Engineering  (Volume:55 ,  Issue: 5 )