Cart (Loading....) | Create Account
Close category search window
 

On-Chip Process Variation Detection Using Slew-Rate Monitoring Circuit

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Ghosh, A. ; Univ. of Utah, Salt Lake City ; Rao, R.M. ; Jae-Joon Kim ; Ching-Te Chuang
more authors

The need for efficient and accurate detection schemes to mitigate the impact of process variations on the parametric yield of integrated circuits has increased in the nm design era. In this paper, a new variation detection technique is presented that uses slew as a metric along with delay to determine the mismatch between the drive strengths of NMOS and PMOS devices. The importance of considering both of these metrics is illustrated and a new slew-rate monitoring circuit is presented for measuring slew of a signal from the critical path of a circuit. Design considerations, simulation results and characteristics of the slew-rate monitor circuitry in a 45 nm SOI technology are presented, and a sensitivity of 1 MHz/ps is achieved. This scheme can detect the threshold voltage variation in the order of mV, with a sensitivity of 0.95 MHz/mV.

Published in:

VLSI Design, 2008. VLSID 2008. 21st International Conference on

Date of Conference:

4-8 Jan. 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.