By Topic

Realization of low power high-speed channel filters with stringent adjacent channel attenuation specifications for software radio receivers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Mathew, J. ; Univ. of Bristol, Bristol ; Mahesh, R. ; Vinod, A.P. ; Lai, E.M.

Finite impulse response (FIR) filtering is the most computationally intensive operation in the channelizer of a software defined radio (SDR) receiver. Higher order FIR channel filters are needed in the channelizer to meet the stringent adjacent channel attenuation specifications of wireless communications standards. The computational cost of FIR filters is dominated by the complexity of the coefficient multipliers. Even though many methods for reducing the complexity of filter multipliers have been proposed in literature, these works focused on lower order filters. This paper presents a coefficient-partitioning-based binary subexpression elimination method for realizing low power FIR filters. We show that the FIR filters implemented using proposed method consume less power and achieve speed improvement compared to existing filter implementations. Design examples of the channel filters employed in the digital advanced mobile phone system (D-AMPS) and personal digital cellular (PDC) receivers show that the proposed method achieved 23% average reductions of full adder and power consumption and 23.3% reduction of delay over the best existing method.

Published in:

Information, Communications & Signal Processing, 2007 6th International Conference on

Date of Conference:

10-13 Dec. 2007