Cart (Loading....) | Create Account
Close category search window

Incremental association rule mining using promising frequent itemset algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Amornchewin, R. ; King Mongkut''s Inst. of Technol. Ladkrabang, Bangkok ; Kreesuradej, W.

Association rule discovery is an important area of data mining. In dynamic databases, new transactions are appended as time advances. This may introduce new association rules and some existing association rules would become invalid. Thus, the maintenance of association rules for dynamic databases is an important problem. In this paper, promising frequent itemset algorithm, which is an incremental algorithm, is proposed to deal with this problem. The proposed algorithm uses maximum support count of 1-itemsets obtained from previous mining to estimate infrequent itemsets, called promising itemsets, of an original database that will capable of being frequent itemsets when new transactions are inserted into the original database. Thus, the algorithm can reduce a number of times to scan the original database. As a result, the algorithm has execution time faster than that of previous methods. This paper also conducts simulation experiments to show the performance of the proposed algorithm. The simulation results show that the proposed algorithm has a good performance.

Published in:

Information, Communications & Signal Processing, 2007 6th International Conference on

Date of Conference:

10-13 Dec. 2007

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.