By Topic

Block-Iterative Fisher Scoring Algorithms for Maximum Penalized Likelihood Image Reconstruction in Emission Tomography

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jun Ma ; Dept. of Stat., Macquarie Univ., Sydney, NSW ; Hudson, M.

This paper introduces and evaluates a block-iterative fisher scoring (BFS) algorithm. The algorithm provides regularized estimation in tomographic models of projection data with Poisson variability. Regularization is achieved by penalized likelihood with a general quadratic penalty. Local convergence of the block-iterative algorithm is proven under conditions that do not require iteration dependent relaxation. We show that, when the algorithm converges, it converges to the unconstrained maximum penalized likelihood (MPL) solution. Simulation studies demonstrate that, with suitable choice of relaxation parameter and restriction of the algorithm to respect nonnegative constraints, the BFS algorithm provides convergence to the constrained MPL solution. Constrained BFS often attains a maximum penalized likelihood faster than other block-iterative algorithms which are designed for nonnegatively constrained penalized reconstruction.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:27 ,  Issue: 8 )