By Topic

Preparation and Liner Compression of Plasma From an Ultrahigh Speed Flow

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

Preparation of the target plasma represents a critical issue in liner compression techniques to achieve fusion conditions. We consider the use of an ultrahigh speed plasma flow from a special coaxial-gun arrangement known as the plasma flow switch. Experiments have demonstrated that this arrangement can provide plasma flows with speeds in excess of 2000 km/s. Stagnation of such a plasma flow results in fully stripped aluminum plasma with electron temperatures of 30 keV. Substitution of deuterium or a deuterium-tritium mixture could provide target plasma at kilovolt temperatures within an imploding liner. Such temperatures suggest that, even if substantial heat loss occurred during liner compression, fusion-level temperatures would be possible. The concatenation of events to generate the ultrahigh speed flow, to direct it into the implosion chamber, and to arrange liner dynamics for effective compression demands numerical simulation, which is based on initial analytical estimates. Both types of calculation for exploring this concept are discussed.

Published in:

IEEE Transactions on Plasma Science  (Volume:36 ,  Issue: 1 )