Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

A Speed-Optimized Systolic Array Processor Architecture for Spatio-Temporal 2-D IIR Broadband Beam Filters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
2 Author(s)
Madanayake, H.L.P.A. ; Dept. of Electr. & Comput. Eng., Univ. of Calgary, Calgary, AB ; Bruton, L.T.

For high-speed plane-wave filtering applications, real-time 2-D spatio-temporal linear-array broadband beam filters are required, operating at temporal frame rates in excess of hundreds of megahertz. The corresponding application specific VLSI circuits must have low critical-path latencies. A novel high-speed systolic array architecture for a first-order 2-D broadband frequency-planar spatio-temporal beam filter is proposed for this purpose and employs a field-programmable gate array (FPGA) circuit where the critical path latency is minimized by timing optimization of inter- and intra-parallel processor pipelines, together with 3-D look-ahead techniques. The method facilitates single-chip VLSI circuit implementations operating at real-time frame rates of several hundred megahertz.

Published in:

Circuits and Systems I: Regular Papers, IEEE Transactions on  (Volume:55 ,  Issue: 7 )