By Topic

Efficient Morse Decompositions of Vector Fields

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Guoning Chen ; Sch. of Electr. Eng. & Comput. Sci., Oregon State Univ., Corvallis, OR ; Mischaikow, K. ; Laramee, R.S. ; Zhang, E.

Existing topology-based vector field analysis techniques rely on the ability to extract the individual trajectories such as fixed points, periodic orbits, and separatrices that are sensitive to noise and errors introduced by simulation and interpolation. This can make such vector field analysis unsuitable for rigorous interpretations. We advocate the use of Morse decompositions, which are robust with respect to perturbations, to encode the topological structures of a vector field in the form of a directed graph, called a Morse connection graph (MCG). While an MCG exists for every vector field, it need not be unique. Previous techniques for computing MCGs, while fast, are overly conservative and usually result in MCGs that are too coarse to be useful for the applications. To address this issue, we present a new technique for performing Morse decomposition based on the concept of tau-maps, which typically provides finer MCGs than existing techniques. Furthermore, the choice of tau provides a natural trade-off between the fineness of the MCGs and the computational costs. We provide efficient implementations of Morse decomposition based on tau-maps, which include the use of forward and backward mapping techniques and an adaptive approach in constructing better approximations of the images of the triangles in the meshes used for simulation. Furthermore, we propose the use of spatial tau-maps in addition to the original temporal tau-maps. These techniques provide additional trade-offs between the quality of the MCGs and the speed of computation. We demonstrate the utility of our technique with various examples in the plane and on surfaces including engine simulation data sets.

Published in:

Visualization and Computer Graphics, IEEE Transactions on  (Volume:14 ,  Issue: 4 )