By Topic

Real-Time Stereo Visual SLAM in Large-Scale Environments based on SIFT Fingerprints

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)

This paper presents a new method for real-time SLAM calculation applied to autonomous robot navigation in large-scale environments without restrictions. It is exclusively based on the visual information provided by a cheap wide-angle stereo camera. Our approach divide the global map into local sub-maps identified by the so-called SIFT fingerprint. At the sub-map level (low level SLAM), 3D sequential mapping of natural land-marks and the robot location/orientation are obtained using a top-down Bayesian method to model the dynamic behavior. A high abstraction level to reduce the global accumulated drift, keeping real-time constraints, has been added (high level SLAM). This uses a correction method based on the SIFT fingerprints taking for each sub-map. A comparison of the low SLAM level using our method and SIFT features has been carried out. Some experimental results using a real large environment are presented.

Published in:

Intelligent Signal Processing, 2007. WISP 2007. IEEE International Symposium on

Date of Conference:

3-5 Oct. 2007