Cart (Loading....) | Create Account
Close category search window
 

A 7-dB 43-GHz CMOS Distributed Amplifier on High-Resistivity SOI Substrates

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Pavageau, C. ; Inst. d''Electron. et de Microelectron. et de Nanotechnol. (IEMN), Villeneuve d''Ascq ; Si Moussa, M. ; Raskin, J.-P. ; Vanhoenaker-Janvier, D.
more authors

This paper presents designs and measurements of distributed amplifiers (DAs) processed on a 130-nm silicon-on-insulator CMOS technology on either standard-resistivity (10 Omegamiddotcm) or high-resistivity (>1 kOmegamiddotcm) substrates, and with either body-contacted (BC) or floating-body (FB) MOSFETs. Investigations have been carried out to assess the impact of active device performance and transmission line losses on circuit design by means of simulations, analytical calculations, and comparisons of the small-signal equivalent-circuit parameters. On standard-resistivity substrates, DAs with FB devices and lossy microstrip lines on thin film exhibit a measured gain of 7.1 dB and a unity-gain bandwidth (UGB) of 27 GHz for a dc power consumption of 57 mW. With the introduction of high-resistivity substrates, other DAs, with the same architecture and using lower loss coplanar waveguide lines, show a UGB of 51 GHz with FB devices and 47 GHz with BC devices. To the authors' knowledge, the designs presented in this paper achieve the best tradeoffs in terms of gain, bandwidth, and power consumption for CMOS-based circuits with comparable architecture.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:56 ,  Issue: 3 )

Date of Publication:

March 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.