By Topic

Microstrip Leaky-Wave Antenna With Control of Leakage Rate and Only One Main Beam in the Azimuthal Plane

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

An original leaky-wave antenna (LWA), conceived from a microstrip line which is laterally shielded by parallel plates, is presented in this paper. This structure shows, for the first time, that the leakage rate of a microstrip leaky-mode can be easily controlled while negligibly affecting the pointing direction. The antenna is based on the radiation from the second higher order mode of the microstrip line, which is perturbed by the addition of the two conductor walls to control the level of the leakage rate. The parallel-plates also serve as a mechanism to obtain a single main beam in the azimuthal plane, therefore improving the radiation pattern compared to common dual-beam second-higher order mode microstrip LWAs. The proposed antenna is analyzed by obtaining the corresponding leaky-mode complex propagation constant, which is calculated by a specific method of moments approach. The modal results obtained from the leaky-mode dispersion curves are validated with analysis performed on a three-dimensional structure using commercial finite element method solver. Also, a prototype is fabricated to experimentally confirm the advantages of this novel leaky-wave line source.

Published in:

IEEE Transactions on Antennas and Propagation  (Volume:56 ,  Issue: 2 )