By Topic

A Multiagent-Based Decision-Making System for Semiconductor Wafer Fabrication With Hard Temporal Constraints

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)

This paper presents a decision-making system for semiconductor wafer fabrication facilities, or wafer fabs, with hard interoperation temporal constraints. The decision-making system is developed based on a multiagent architecture that is composed of scheduling agents, workcell agents, machine agents, and product agents. The decision-making problem is to allocate lots into each workcell to satisfy both logical and temporal constraints. A dynamic planning-based approach is adopted for the decision-making mechanism so that the dynamic behaviors of the wafer fab such as aperiodic lot arrivals and reconfiguration can be taken into consideration. The scheduling agents compute quasi-optimal schedules through a bidding mechanism with the workcell agents. The proposed decision-making mechanism uses a concept of temporal constraint sets to obtain a feasible schedule in polynomial steps. The computational complexity of the decision-making mechanism is proven to be, where is the number of operations of a lot and is the cardinality of the temporal constraint set.

Published in:

Semiconductor Manufacturing, IEEE Transactions on  (Volume:21 ,  Issue: 1 )