By Topic

THD of Closed-Loop Analog PWM Class-D Amplifiers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Wei Shu ; Sch. of Electr. & Electron. Eng., Nanyang Technol. Univ., Singapore ; Chang, Joseph S.

This paper presents an analytical modeling of the mechanisms of total harmonic distortion (THD) of second-order based single-feedback and double-feedback class-D amplifiers (CDAs). We show that the overall THD in these closed-loop CDAs comprises the THD of their open-loop counterparts reduced by the Loop Gain+1 and the THD due to the combined phase and duty cycle error that is due to feedback, hence unique to closed-loop CDAs. We show that the latter THD can be large and is the dominant THD at high input frequencies ( > 3 kHz), and that the mechanisms therein are the phase and duty cycle errors. By means of double Fourier series analysis, analytical expressions for the harmonic components and thereafter a THD expression for closed-loop CDAs are derived. The derived expressions depict the parameters that affect THD, and are insightful to designers to optimize/vary pertinent parameters to reduce THD. The derived THD expression is verified against HSPICE and on the basis of measurements on a prototype CDA IC and other CDAs realized discretely.

Published in:

Circuits and Systems I: Regular Papers, IEEE Transactions on  (Volume:55 ,  Issue: 6 )