By Topic

A Novel \Delta \Sigma Control System Processor and Its VLSI Implementation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

This paper describes a novel control system processor architecture based on DeltaSigma modulation known as the DeltaSigma -CSP. The DeltaSigma -CSP utilizes 1-bit processing which is a new concept in digital control applications with the direct benefit of making multi-bit multiplication operations redundant. A simple conditional-negate-and-add (CNA) unit is instead used for operations in control law implementations. For this reason, the proposed processor has a very small silicon footprint and runs at very high frequencies making it ideal for high-sampling rate, real-time control applications. A number of DeltaSigma -CSP configurations have been implemented as VLSI hard macros in a high-performance 0.13-mum CMOS process and a particular configuration achieved a post-route operating frequency of 355 MHz resulting in a 2.17 MHz sampling rate for a fourth-order control law implementation. Additional results prove that the DeltaSigma -CSP compares very favorably, in terms of silicon area and sampling rates, to two other specialized digital control processing systems, including direct, hardwired implementation of control laws; at the same time, it substantially outperforms software implementations of control laws running on very wide, general-purpose VLIW architectures.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:16 ,  Issue: 3 )