By Topic

Structural robustness of biochemical network models-with application to the oscillatory metabolism of activated neutrophils

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $33
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
E. W. Jacobsen ; Autom. Control Lab., R. Inst. of Technol. (KTH), Stockholm ; G. Cedersund

Sensitivity of biochemical network models to uncertainties in the model structure, with a focus on autonomously oscillating systems, is addressed. Structural robustness, as defined here, concerns the sensitivity of the model predictions with respect to changes in the specific interactions between the network components and encompass, for instance, uncertain kinetic models, neglected intermediate reaction steps and unmodelled transport phenomena. Traditional parametric sensitivity analysis does not address such structural uncertainties and should therefore be combined with analysis of structural robustness. Here a method for quantifying the structural robustness of models for systems displaying sustained oscillations is proposed. The method adopts concepts from robust control theory and is based on adding dynamic perturbations to the network of interacting biochemical components. In addition to providing a measure of the overall robustness, the method is able to identify specific network fragilities. The importance of considering structural robustness is demonstrated through an analysis of a recently proposed model of the oscillatory metabolism in activated neutrophils. The model displays small parametric sensitivities, but is shown to be highly unrobust to small perturbations in some of the network interactions. Identification of specific fragilities reveals that adding a small delay or diffusion term in one of the involved reactions, likely to exist in vivo, completely removes all oscillatory behaviour in the model.

Published in:

IET Systems Biology  (Volume:2 ,  Issue: 1 )