Cart (Loading....) | Create Account
Close category search window
 

Spline-Based Cardiac Motion Tracking Using Velocity-Encoded Magnetic Resonance Imaging

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Bergvall, E. ; Dept. of Clinical Physiol., Lund Univ. Hosp., Lund ; Hedstrom, E. ; Bloch, K.M. ; Arheden, H.
more authors

This paper deals with the problem of tracking cardiac motion and deformation using velocity-encoded magnetic resonance imaging. We expand upon an earlier described method and fit a spatiotemporal motion model to measured velocity data. We investigate several different spatial elements both qualitatively and quantitatively using phantom measurements and data from human subjects. In addition, we also use optical flow estimation by the Horn-Schunk method as complementary data in regions where the velocity measurements are noisy. Our results show that it is possible to obtain good motion tracking accuracy in phantoms with relatively few spatial elements, if the type of element is properly chosen. The use of optical flow can correct some measurement artifacts but may give an underestimation of the magnitude of the deformation. In human subjects the different spatial elements perform quantitatively in a similar way but qualitative differences exists, as shown by a semiquantitative visual scoring of the different methods.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:27 ,  Issue: 8 )

Date of Publication:

Aug. 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.