Cart (Loading....) | Create Account
Close category search window
 

A 1-V 45-GHz Balanced Amplifier With 21.5-dB Gain Using 0.18- \mu{\hbox {m}} CMOS Technology

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jun-De Jin ; Nat. Tsing Hua Univ., Hsinchu ; Hsu, S.S.H.

A fully integrated balanced amplifier was realized in a standard 0.18-mum CMOS technology. From the measured-parameters, a gain up to 21.5 dB was achieved at 45.4 GHz under a supply voltage of only 1 V and a total power consumption of 89 mW. An effective technique, i.e., pi-type parallel resonance, was proposed to enhance the device and circuit frequency response. In addition, the semicoaxial line structure was used to reduce the signal loss and physical size of the Lange couplers in the amplifier. To the best of the authors' knowledge, the proposed balanced amplifier demonstrated the highest operation frequency and the lowest operation voltage among the published millimeter-wave amplifiers using a similar technology.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:56 ,  Issue: 3 )

Date of Publication:

March 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.