By Topic

Image Feature Localization by Multiple Hypothesis Testing of Gabor Features

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Ilonen, J. ; Lappeenranta Univ. of Technol., Lappeenranta ; Kamarainen, J.-K. ; Paalanen, P. ; Hamouz, M.
more authors

Several novel and particularly successful object and object category detection and recognition methods based on image features, local descriptions of object appearance, have recently been proposed. The methods are based on a localization of image features and a spatial constellation search over the localized features. The accuracy and reliability of the methods depend on the success of both tasks: image feature localization and spatial constellation model search. In this paper, we present an improved algorithm for image feature localization. The method is based on complex-valued multiresolution Gabor features and their ranking using multiple hypothesis testing. The algorithm provides very accurate local image features over arbitrary scale and rotation. We discuss in detail issues such as selection of filter parameters, confidence measure, and the magnitude versus complex representation, and show on a large test sample how these influence the performance. The versatility and accuracy of the method is demonstrated on two profoundly different challenging problems (faces and license plates).

Published in:

Image Processing, IEEE Transactions on  (Volume:17 ,  Issue: 3 )