By Topic

Potential of MRI and Ultrasound Radiation Force in Elastography: Applications to Diagnosis and Therapy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Ralph Sinkus ; Ecole Superieure de Phys. et de Chilie Ind., Paris ; MickaËl Tanter ; JÉrÉmy Bercoff ; Katja Siegmann
more authors

Elastography has many exciting new areas of application in the domains of diagnosis and therapy. We present in this overview the current gold standard given by MR elastography, which uses a full three-dimensional approach to solve locally for the unknown complex shear modulus at one frequency. Clinical results for benign and malignant breast lesions are shown. Less rigorous in terms of data completeness, but significantly faster and easier to apply, we introduce the ultrasound-based supersonic shear imaging technique, which uses acoustic radiation force to generate inside the medium planar shear waves. Subsequent ultrafast imaging of the propagating shear wave allows one to recuperate detailed time-of-flight maps of in-vivo breast lesions. Lastly, we present initial results for using magnetic resonance imaging and acoustic radiation force together for high-intensity focused ultrasound interventions.

Published in:

Proceedings of the IEEE  (Volume:96 ,  Issue: 3 )