Cart (Loading....) | Create Account
Close category search window

Continuous Tuning and Efficient Intracavity Second-Harmonic Generation in a Semiconductor Disk Laser With an Intracavity Diamond Heatspreader

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Maclean, A.J. ; Univ. of Strathclyde, Glasgow ; Kemp, A.J. ; Calvez, S. ; Jun-Youn Kim
more authors

Using a wedged and antireflection-coated diamond heatspreader, a continuously tunable semiconductor disk laser with intracavity second-harmonic generation (SHG) is demonstrated. Output powers of > 600 mW tunable over 10 nm around 530 nm are obtained. Finite-element modeling shows that the use of a diamond heatspreader for thermal management - in contrast to substrate thinning approaches - permits power scaling across the 670-2300-nm range of these lasers. Using a green laser as an exemplar, this paper details the issues involved in translating this spectral coverage to the ultraviolet and visible via SHG. Polarization and wavelength selection are discussed and the adopted approaches presented. Almost 1 W of second-harmonic light at 530 nm is demonstrated, with an efficiency of 11% with respect to the incident pump power.

Published in:

Quantum Electronics, IEEE Journal of  (Volume:44 ,  Issue: 3 )

Date of Publication:

March 2008

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.