By Topic

A Theoretical Analysis of Bagging as a Linear Combination of Classifiers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Fumera, G. ; Dept. of Electr. & Electron. Eng., Univ. of Cagliari, Cagliari ; Roli, F. ; Serrau, A.

We apply an analytical framework for the analysis of linearly combined classifiers to ensembles generated by bagging. This provides an analytical model of bagging misclassification probability as a function of the ensemble size, which is a novel result in the literature. Experimental results on real data sets confirm the theoretical predictions. This allows us to derive a novel and theoretically grounded guideline for choosing bagging ensemble size. Furthermore, our results are consistent with explanations of bagging in terms of classifier instability and variance reduction, support the optimality of the simple average over the weighted average combining rule for ensembles generated by bagging, and apply to other randomization-based methods for constructing classifier ensembles. Although our results do not allow to compare bagging misclassification probability with the one of an individual classifier trained on the original training set, we discuss how the considered theoretical framework could be exploited to this aim.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:30 ,  Issue: 7 )