Cart (Loading....) | Create Account
Close category search window
 

C-TREND: Temporal Cluster Graphs for Identifying and Visualizing Trends in Multiattribute Transactional Data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Adomavicius, G. ; Dept. of Inf. & Decision Sci., Univ. of Minnesota, Minneapolis, MN ; Bockstedt, J.

Organizations and firms are capturing increasingly more data about their customers, suppliers, competitors, and business environment. Most of this data is multiattribute (multidimensional) and temporal in nature. Data. mining and business intelligence, techniques are often used to discover patterns in such data; however, mining temporal relationships typically is a complex task. We propose a new data analysis and visualization technique for representing trends in multiattribute temporal data using a clustering- based approach. We introduce Cluster-based Temporal Representation of EveNt Data (C-TREND), a system that implements the temporal cluster graph construct, which maps multiattribute temporal data to a two-dimensional directed graph that identifies trends in dominant data types over time. In this paper, we present our temporal clustering-based technique, discuss its algorithmic implementation and performance, demonstrate applications of the technique by analyzing data on wireless networking technologies and baseball batting statistics, and introduce a set of metrics for further analysis of discovered trends.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:20 ,  Issue: 6 )

Date of Publication:

June 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.