By Topic

A Token-Based Distributed Group Mutual Exclusion Algorithm with Quorums

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kakugawa, H. ; Grad. Sch. of Inf. Sci. & Technol., Osaka Univ., Suita ; Kamei, S. ; Masuzawa, T.

The group mutual exclusion problem is a generalization of mutual exclusion problem such that a set of processes in the same group can enter critical section simultaneously. In this paper, we propose a distributed algorithm for the group mutual exclusion problem in asynchronous message passing distributed systems. Our algorithm is based on tokens, and a process that obtains a token can enter critical section. For reducing message complexity, it uses coterie as a communication structure when a process sends a request messages. Informally, coterie is a set of quorums, each of which is a subset of the process set, and any two quorums share at least one process. The message complexity of our algorithm is O(|Q|) in the worst case, where |Q| is a quorum size that the algorithm adopts. Performance of the proposed algorithm is presented by analysis and discrete event simulation. Especially, the proposed algorithm achieves high concurrency, which is a performance measure for the number of processes that can be in critical section simultaneously.

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:19 ,  Issue: 9 )