By Topic

Frequency domain pre-equalization with transmit precoding for MIMO broadcast wireless channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yu Zhu ; Fudan Univ., Shanghai ; Letaief, K.B.

Recent research has shown that frequency domain pre-equalization (FDPE) can provide broadcast transmissions over multi-input multi-output (MIMO) frequency selective channels, where the multiple receivers need limited processing. In this paper, we consider the combination of FDPE with parallel and successive Tomlinson-Harashima Precoding (THP) and propose two novel FDPE MIMO schemes, which are referred to as FDPE-P-THP and FDPE-S-THP, respectively, based on the minimum mean square error (MMSE) criterion. The ordering algorithm in the FDPE-S-THP scheme is considered and it is shown that the system with even a randomly selected order can perform almost as well as that with the optimal one. This paper further develops an accurate theoretical performance analysis methodology for the proposed FDPE-THP schemes. Numerical results along with analytical results demonstrate the significant performance improvement of our proposed schemes compared to the conventional FDPE MIMO schemes. The channel estimation errors and channel variation effects on the proposed system are also investigated. It is shown that the performance degradation due to channel variation can be efficiently reduced by applying channel prediction.

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:26 ,  Issue: 2 )