By Topic

Joint iterative decoding of LDPC codes for channels with memory and erasure noise

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Pfister, H.D. ; Texas A&M Univ., College Station ; Siegel, P.H.

This paper investigates the joint iterative decoding of low-density parity-check (LDPC) codes and channels with memory. Sequences of irregular LDPC codes are presented that achieve, under joint iterative decoding, the symmetric information rate of a class of channels with memory and erasure noise. This gives proof, for the first time, that joint iterative decoding can be information rate lossless with respect to maximum-likelihood decoding. These results build on previous capacity-achieving code constructions for the binary erasure channel. A two state intersymbol-interference channel with erasure noise, known as the dicode erasure channel, is used as a concrete example throughout the paper.

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:26 ,  Issue: 2 )