By Topic

Graph-based detection algorithms for layered space-time architectures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)

We consider a unified framework to develop various graph-based detection algorithms for layered space-time architectures. We start with a factor graph representation for the communication channel, apply a belief propagation (BP) based algorithm for channel detection, and show that the detector achieves a near optimal performance even when number of receive antennas is smaller than number of transmit antennas. Based on this baseline algorithm, we further develop three different extensions of the BP detector that provide a good complexity/performance trade-off, which are especially useful for systems with a large number of antennas or when we encounter a frequency-selective fading channel with a long ISI span. Moreover, all the proposed detectors are soft-input soft-output in nature and they can be directly applied for use in turbo processing without any additional modifications. We study the performance of the new detectors via both simulations and convergence analysis using the measure of average mutual information.

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:26 ,  Issue: 2 )