Cart (Loading....) | Create Account
Close category search window
 

Electrical Measurement of Local Stress and Lateral Diffusion Near Source/Drain Extension Corner of Uniaxially Stressed n-MOSFETs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chen-Yu Hsieh ; Nat. Chiao-Tung Univ., Hsinchu ; Ming-Jer Chen

On a 1.27-nm gate oxide n-MOSFET that undergoes longitudinal stress via a layout technique, subthreshold current is measured as a function of the gate edge to shallow-trench isolation (STI) spacing and is transformed via bandgap shift into the source/drain extension corner stress. The extracted local stress is quantitatively comparable with those of the channel as created by the gate direct tunneling measurement in inversion, the mobility measurement, and the threshold voltage measurement. In addition, its dependencies on the gate edge to STI spacing confirm the validity of the layout technique in controlling the corner or channel stress. The gate edge direct tunneling (EDT) measurement in accumulation straightforwardly leads to the quantified gate- to-source/drain-extension overlap length. Particularly, a retarded diffusion length of 1.1 nm for a stress change of -320 MPa and the resulting strain-induced activation energy both are in satisfactory agreement with those of the process simulation. A physically oriented analytic model is, therefore, reached, expressing the lateral diffusion as a function of the corner stress.

Published in:

Electron Devices, IEEE Transactions on  (Volume:55 ,  Issue: 3 )

Date of Publication:

March 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.