By Topic

Remote Sensing Image Fusion Using Multiscale Mapped LS-SVM

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Sheng Zheng ; China Three Gorges Univ., Yichang ; Wen-zhong Shi ; Liu, Jian ; Jinwen Tian

The panchromatic (Pan) sharpening of multispectral (MS) bands is an important technique in the various applications of satellite remote sensing. This paper presents an MS Pan- sharpening method using the proposed multiscale mapped least-squares support vector machine (LS-SVM). Under the LS-SVM framework, the salient features underlying the image are represented by support values, and the support value transform (SVT) is developed for image information extraction. The low-resolution MS bands are resampled to the fine scale of the Pan image and sharpened by injecting the detailed features extracted from the high-resolution Pan image. The support value analysis is implemented by using a series of multiscale support value filters that are deduced from the mapped LS-SVM with multiscale Gaussian radial basis function kernels. Experiments are carried out on very high resolution QuickBird MS + Pan data. Fusion simulations on spatially degraded data, whose original MS bands are available for reference, show that the proposed MS Pan-sharpening method performs comparable to the state-of-the-art in terms of the pertained quantitative quality evaluation indexes, such as the Spectral Angle Mapper, relative dimensionless global error in synthesis (ERGAS), modulation-transfer-function-based tool and quality index (Q4), etc. The SVT is an effective tool for remote sensing image fusion.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:46 ,  Issue: 5 )