Scheduled System Maintenance:
On May 6th, system maintenance will take place from 8:00 AM - 12:00 PM ET (12:00 - 16:00 UTC). During this time, there may be intermittent impact on performance. We apologize for the inconvenience.
By Topic

Noisy Chaotic Neural Networks With Variable Thresholds for the Frequency Assignment Problem in Satellite Communications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
3 Author(s)
Lipo Wang ; Nanyang Technol. Univ., Singapore ; Wen Liu ; Haixiang Shi

We propose a novel approach, i.e., a noisy chaotic neural network with variable thresholds (NCNN-VT), to solve the frequency assignment problem in satellite communications. The objective of this NP-complete optimization problem is to minimize cochannel interference between two satellite systems by rearranging frequency assignments. The NCNN-VT model consists N times M of noisy chaotic neurons for an N-carrier M-segment problem. The NCNN-VT facilitates the interference minimization by mapping the objective to variable thresholds (biases) of the neurons. The performance of the NCNN-VT is demonstrated by solving a set of benchmark problems and randomly generated test instances. The NCNN-VT achieves better solutions, i.e., smaller interference with much lower computation cost compared to existing algorithms.

Published in:

Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on  (Volume:38 ,  Issue: 2 )