By Topic

Noisy Chaotic Neural Networks With Variable Thresholds for the Frequency Assignment Problem in Satellite Communications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Lipo Wang ; Nanyang Technol. Univ., Singapore ; Wen Liu ; Haixiang Shi

We propose a novel approach, i.e., a noisy chaotic neural network with variable thresholds (NCNN-VT), to solve the frequency assignment problem in satellite communications. The objective of this NP-complete optimization problem is to minimize cochannel interference between two satellite systems by rearranging frequency assignments. The NCNN-VT model consists N times M of noisy chaotic neurons for an N-carrier M-segment problem. The NCNN-VT facilitates the interference minimization by mapping the objective to variable thresholds (biases) of the neurons. The performance of the NCNN-VT is demonstrated by solving a set of benchmark problems and randomly generated test instances. The NCNN-VT achieves better solutions, i.e., smaller interference with much lower computation cost compared to existing algorithms.

Published in:

IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews)  (Volume:38 ,  Issue: 2 )