Cart (Loading....) | Create Account
Close category search window

A 128× 128 120 dB 15 μs Latency Asynchronous Temporal Contrast Vision Sensor

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Lichtsteiner, P. ; UNI-ETH Zurich, Zurich ; Posch, C. ; Delbruck, T.

This paper describes a 128 times 128 pixel CMOS vision sensor. Each pixel independently and in continuous time quantizes local relative intensity changes to generate spike events. These events appear at the output of the sensor as an asynchronous stream of digital pixel addresses. These address-events signify scene reflectance change and have sub-millisecond timing precision. The output data rate depends on the dynamic content of the scene and is typically orders of magnitude lower than those of conventional frame-based imagers. By combining an active continuous-time front-end logarithmic photoreceptor with a self-timed switched-capacitor differencing circuit, the sensor achieves an array mismatch of 2.1% in relative intensity event threshold and a pixel bandwidth of 3 kHz under 1 klux scene illumination. Dynamic range is > 120 dB and chip power consumption is 23 mW. Event latency shows weak light dependency with a minimum of 15 mus at > 1 klux pixel illumination. The sensor is built in a 0.35 mum 4M2P process. It has 40times40 mum2 pixels with 9.4% fill factor. By providing high pixel bandwidth, wide dynamic range, and precisely timed sparse digital output, this silicon retina provides an attractive combination of characteristics for low-latency dynamic vision under uncontrolled illumination with low post-processing requirements.

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:43 ,  Issue: 2 )

Date of Publication:

Feb. 2008

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.