By Topic

MICA: A Multilinear ICA Decomposition for Natural Scene Modeling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Raghu G. Raj ; Univ. of Texas at Austin, Austin ; Alan C. Bovik

We refine the classical independent component analysis (ICA) decomposition using a multilinear expansion of the probability density function of the source statistics. In particular, we introduce a specific nonlinear system that allows us to elegantly capture the statistical dependences between the responses of the multilinear ICA (MICA) filters. The resulting multilinear probability density is analytically tractable and does not require Monte Carlo simulations to estimate the model parameters. We demonstrate the MICA model on natural image textures and envision that the new model will prove useful for analyzing nonstationarity natural images using natural scene statistics models.

Published in:

IEEE Transactions on Image Processing  (Volume:17 ,  Issue: 3 )