By Topic

Change Detection in Multisensor SAR Images Using Bivariate Gamma Distributions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Florent Chatelain ; IRIT/ENSEEIHT/TeSA, Toulouse ; Jean-Yves Tourneret ; Jordi Inglada

This paper studies a family of distributions constructed from multivariate gamma distributions to model the statistical properties of multisensor synthetic aperture radar (SAR) images. These distributions referred to as multisensor multivariate gamma distributions (MuMGDs) are potentially interesting for detecting changes in SAR images acquired by different sensors having different numbers of looks. The first part of this paper compares different estimators for the parameters of MuMGDs. These estimators are based on the maximum likelihood principle, the method of inference function for margins, and the method of moments. The second part of the paper studies change detection algorithms based on the estimated correlation coefficient of MuMGDs. Simulation results conducted on synthetic and real data illustrate the performance of these change detectors.

Published in:

IEEE Transactions on Image Processing  (Volume:17 ,  Issue: 3 )