By Topic

Two Techniques for Fast Computation of Constrained Shortest Paths

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Shigang Chen ; Florida Univ., Gainesville ; Meongchul Song ; Sahni, S.

Computing constrained shortest paths is fundamental to some important network functions such as QoS routing, MPLS path selection, ATM circuit routing, and traffic engineering. The problem is to find the cheapest path that satisfies certain constraints. In particular, finding the cheapest delay-constrained path is critical for real-time data flows such as voice/video calls. Because it is NP-complete, much research has been designing heuristic algorithms that solve the epsiv-approximation of the problem with an adjustable accuracy. A common approach is to discretize (i.e., scale and round) the link delay or link cost, which transforms the original problem to a simpler one solvable in polynomial time. The efficiency of the algorithms directly relates to the magnitude of the errors introduced during discretization. In this paper, we propose two techniques that reduce the discretization errors, which allows faster algorithms to be designed. Reducing the overhead of computing constrained shortest paths is practically important for the successful design of a high-throughput QoS router, which is limited at both processing power and memory space. Our simulations show that the new algorithms reduce the execution time by an order of magnitude on power-law topologies with 1000 nodes. The reduction in memory space is similar.

Published in:

Networking, IEEE/ACM Transactions on  (Volume:16 ,  Issue: 1 )