Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 5:00 PM ET (12:00 - 21:00 UTC). We apologize for the inconvenience.
By Topic

Analysis and Design of a Novel Three-Phase AC–DC Buck-Boost Converter

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Lung-Sheng Yang ; Nat. Cheng Kung Univ., Tainan ; Tsorng-Juu Liang ; Jiann-Fuh Chen

This paper proposes a novel three-phase ac-dc buck-boost converter. The proposed converter uses four active switches, which are driven by only one control signal. This converter is operated in discontinuous conduction mode (DCM) by using the pulsewidth modulation (PWM) technique, and the control scheme very easily and simply achieves purely sinusoidal input current, high power factor, low total harmonic distortion of the input current and step-up/down output voltage. Also, the proposed converter provides a constant average current to the output capacitor and load in each switching period. Thus, the ripple component of sixth times line frequency will not appear in the output voltage. Therefore, a smaller output capacitor can be used in the proposed converter. Moreover, the steady-state analysis of voltage gain and boundary operating condition are presented. Also, the selections of inductor, output capacitor and input filter are depicted. Finally, a prototype circuit with simple control logic is implemented to illustrate the theoretical analysis.

Published in:

Power Electronics, IEEE Transactions on  (Volume:23 ,  Issue: 2 )