By Topic

Output Feedback Stabilization for Time-Delay Nonlinear Interconnected Systems Using Neural Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Changchun Hua ; Yanshan Univ., Qinhuangdao ; Xinping Guan

In this paper, dynamic output feedback control problem is investigated for a class of nonlinear interconnected systems with time delays. Decentralized observer independent of the time delays is first designed. Then, we employ the bounds information of uncertain interconnections to construct the decentralized output feedback controller via backstepping design method. Based on Lyapunov stability theory, we show that the designed controller can render the closed-loop system asymptotically stable with the help of the changing supplying function idea. Furthermore, the corresponding decentralized control problem is considered under the case that the bounds of uncertain interconnections are not precisely known. By employing the neural network approximation theory, we construct the neural network output feedback controller with corresponding adaptive law. The resulting closed-loop system is stable in the sense of semiglobal boundedness. The observers and controllers constructed in this paper are independent of the time delays. Finally, simulations are done to verify the effectiveness of the theoretic results obtained.

Published in:

IEEE Transactions on Neural Networks  (Volume:19 ,  Issue: 4 )