By Topic

Adaptive Importance Sampling to Accelerate Training of a Neural Probabilistic Language Model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yoshua Bengio ; Univ. de Montreal, Montreal ; Jean-S√Čbastien Senecal

Previous work on statistical language modeling has shown that it is possible to train a feedforward neural network to approximate probabilities over sequences of words, resulting in significant error reduction when compared to standard baseline models based on n-grams. However, training the neural network model with the maximum-likelihood criterion requires computations proportional to the number of words in the vocabulary. In this paper, we introduce adaptive importance sampling as a way to accelerate training of the model. The idea is to use an adaptive n-gram model to track the conditional distributions produced by the neural network. We show that a very significant speedup can be obtained on standard problems.

Published in:

IEEE Transactions on Neural Networks  (Volume:19 ,  Issue: 4 )