By Topic

A New Feature Selection Scheme Using a Data Distribution Factor for Unsupervised Nominal Data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chow, T.W.S. ; City Univ. of Hong Kong, Kowloon ; Piyang Wang ; Ma, E.W.M.

A new efficient unsupervised feature selection method is proposed to handle nominal data without data transformation. The proposed feature selection method introduces a new data distribution factor to select appropriate clusters. The proposed method combines the compactness and separation together with a newly introduced concept of singleton item. This new feature selection method considers all features globally. It is computationally inexpensive and able to deliver very promising results. Eight datasets from the University of California Irvine (UCI) machine learning repository and a high-dimensional cDNA dataset are used in this paper. The obtained results show that the proposed method is very efficient and able to deliver very reliable results.

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:38 ,  Issue: 2 )