By Topic

An 80 nm 4 Gb/s/pin 32 bit 512 Mb GDDR4 Graphics DRAM With Low Power and Low Noise Data Bus Inversion

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

24 Author(s)

4 Gb/s/pin 32 bit 512 Mb GDDR4 (Graphics Double Data Rate 4) SDRAM was implemented by using an 80 nm CMOS process. It employs a data bus inversion (DBI) coding to overcome the bottleneck of a parallel single-ended signaling, a power consumption of I/O, power supply noise, and crosstalk. Both DBI AC and DC modes are combined to a single circuit by eliminating the feedback path of a conventional DBI AC circuit while achieving high-speed operation. The proposed DBI circuit uses an analog majority voter insensitive to mismatch for small area and delay. Ronmiddot tuning further improves the voltage and time margin by adding a user-supplied offset to auto-calibrated Ronmiddot. In addition, a dual duty cycle corrector (DCC) is used to reduce duty error and jitter by averaging two outputs of two DCCs. Measured results show that DBI DC coding reduces the peak-to-peak jitter from 65.5 ps to 44.5 ps and the voltage fluctuation from 183 mV to 115 mV at the data rate of 4 Gb/s with the 2 V.

Published in:

IEEE Journal of Solid-State Circuits  (Volume:43 ,  Issue: 1 )