Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

An EM-Based Semiblind Joint Channel and Frequency Offset Estimator for OFDM Systems Over Frequency-Selective Fading Channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ronghong Mo ; Inst. for Infocomm Res., Singapore ; Yong Huat Chew ; Tjeng Thiang Tjhung ; Chi Chung Ko

We propose an estimator that will jointly estimate the channel and the carrier frequency offset (CFO) for orthogonal frequency-division multiplexing (OFDM) systems based on the maximum-likelihood criterion. The proposed estimator uses only one received OFDM symbol to perform estimation and does not require the knowledge of power delay profile, except that the number of delay paths should be known. The search range for the CFO is first partitioned into a number of subranges. The expectation-maximization (EM) and Newton's methods are then used within each subrange in an alternative manner to jointly obtain the channel and the CFO estimates. By assuming that the transmitted time-domain OFDM signals can be modeled as Gaussian random variables, we show that the EM method has closed-form expressions and, thus, can be efficiently implemented. We then study the mean-square-error (MSE) performance of the estimator under various signal-to-noise (SNRs) ratios and various numbers of cyclic prefix samples through simulations. Finally, we compare the performance of our proposed estimator with that of some existing estimators in terms of bit error rate (BER). Our simulation results show that the proposed estimator performs better than the reported estimator, which sequentially estimates the channel and the CFO. By suitably choosing the number of subranges, our estimator also performs better than a reported estimator, which makes use of pilot symbols to obtain the initial CFO and channel estimates and then uses a decision-directed technique for overall eventual estimation.

Published in:

Vehicular Technology, IEEE Transactions on  (Volume:57 ,  Issue: 5 )