By Topic

Characteristics and Fluctuation of Negative Bias Temperature Instability in Si Nanowire Field-Effect Transistors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)

In this letter, negative bias temperature instability (NBTI) in silicon nanowire field-effect transistors (SNWFETs) is investigated and found to exhibit some new characteristics that are probably due to the structural nature of nanowires. In long-channel SNWFETs, a fast degradation and a quick saturation of NBTI are observed and discussed. In short-channel SNWFETs, a large fluctuation of NBTI is observed, which mainly originates from the ultrasmall gate areas of the short-channel SNWFETs and the statistical nature of randomly trapped charges in the oxide and at the Si/SiO2 interface. Techniques to suppress the fluctuation and characterize the intrinsic NBTI in ultrasmall SNWFETs are proposed and discussed. A recently developed online gate current method is demonstrated, which effectively alleviates this NBTI fluctuation in SNWFETs.

Published in:

IEEE Electron Device Letters  (Volume:29 ,  Issue: 3 )