By Topic

Sensitivity of m = 0 Instability to Different Resistivity Models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

Instabilities can affect the quality of flux compression and other high-current experiments. The modeling of such experiments involves a number of numerical difficulties. One such difficulty is the selection of proper material property models. This paper investigates the effect of different electrical resistivity models on the development of the m = 0 instability in a single cylindrical conductor driven by a current typical of the Atlas generator. The nonlinear development of this magnetohydrodynamic (MHD) instability can lead to current disruption. An important challenge for modeling is to predict the maximum magnetic field on a rod surface that can be obtained prior to disruption. This problem can also be generalized to the more complicated moving liner problem. A series of 2-D MHD simulations was performed with the state-of-the-art MHRDR code to conduct a sensitivity study. Results indicate that the development and growth of m = 0 instability is sensitive to the resistivity models used. Furthermore, it was observed that models with lower values of resistivity near the metal-insulator transition produce higher growth-rate sausage instability.

Published in:

IEEE Transactions on Plasma Science  (Volume:36 ,  Issue: 1 )